p-Doping of Poly(3-hexylthiophene-2,5-diyl) with Sulfonic Acids and Oxygen Related to Selfdoping of Sulfonated Polythiophenes

Takakazu Yamamoto

Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503

(Received December 26, 2002; CL-021099)

Poly(3-hexylthiophene-2,5-diyl), P3HexTh, was p-doped by sulfonic acids such as CH_3SO_3H in the presence of O_2 . In the case of regioregular head-to-tail type P3HexTh, molecular assembly took place prior to the p-doping. Tetramer and pentamer of thiophene underwent similar oxidation.

 π -Conjugated polymers are the subject of recent interest,¹ and π -conjugated polymers with pendant $-SO₃H$ groups have attracted specialattention.² They receive so-called ''self-doping'' and have found practical applications. However, there still remain unclear parts about the self-doping. Previously, we proposed the following chemical reaction for the self-doping of $poly[3-(3)]$ sulfopropyl)thiophene], $P3(PrSO₃H)Th$, under air:³

If the self-doping can be expressed as this, use of free sulfonic acid, instead of the pendant sulfonic acid, would also lead to similar p-doping of polythiophenes. In order to get more information about the self-doping and for better understanding of chemical doping of π -conjugated polymers, we followed reactions of poly(3-hexylthiophene-2,5-diyl), P3HexTh, with sulfonic acids under air by UV-vis spectroscopy, and herein report the results. Two types of P3HexTh were used in this study. P3HexTh(Fe) with a head-to-tail unit content of 80% and number average molecular weight, Mn, of 13500 (vs polystyrene standards; determined by gel permeation chromatography) was prepared by oxidative polymerizatoin of 3-hexylthiophene and dedoped as previously reported, whereas commercially available head-to-tail type P3HexTh(Zn/Ni) with a head-to-tail content of 98.5% and Mn of 17900 was used as another sample.⁴

Figure 1 shows changes of UV-vis spectrum of P3HexTh(Fe) during the reaction with $CH_3SO_3H (pK = -6.0)^5$ in chloroform under air. The original peak of neutral P3HexTh(Fe) at 429 nm decreases with time, and the new peak at 832 nm is assigned to pdoped polythiophenes.^{1-3,6} The spectroscopic change is similar to those observed during the self-doping of $P3(PrSO₃H)Th³$ and electrochemical oxidation of polythiophenes.^{6c} These results suggest that p-doping of P3HexTh(Fe) occurs with CH₃SO₃H according to the following reaction.

Figure 1. Changes of UV-vis spectrum of P3HexTh(Fe) in the reaction with methanesulfonic acid (0.27 M) in chloroform at 24° C under air. Time after the first scan to obtain curve (a)/s: (b) 360; (c) 1440; (d) 4300; (e) 9500.

The p-doping with CH_3SO_3H did not proceed under N₂, similar to the case of P3(PrSO₃H)Th under N_2 ;³ the reaction of $P3HexTh(Fe)$ with $CH₃SO₃H$ did not show significant changes of the UV-vis spectrum under N_2 , supporting necessity of O_2 in the p-doping. The p-doping was accelerated under O_2 . Without $CH₃SO₃H$, P3HexTh(Fe) did not receive the p-doping even under $O₂$.

Concentration of $CH₃SO₃H$ is crucial for the p-doping, suggesting that the distance between the polymer and $CH₃SO₃H$ is important for the p-doping. The data shown in Figure 1 were obtained with $0.27 M$ of CH₃SO₃H, whereas at $0.18 M$ of $CH₃SO₃H$ the rate of the p-doping became very slow and the pdoped state near that expressed by the curve (b) in Figure 1 was attained after 1 day. The degree of p-doping finally attained also depended on the concentration. The concentration of 0.27 M indicates that the solution contains $CH₃SO₃H$ every 18 Å, whereas the increase in the average distance from 18 Å of 0.27 M to 21 Å of 0.18 M seems to give a severe retardation of the p-doping due to a decrease in the chance for the acid molecule to approach the redox active thiophene unit in the polymer. For this reason, $P3(PrSO₃H)Th$ seems to have advantages to form the stable p-doped state. Even when the $PrSO₃H$ group in $P3(PrSO₃H)Th$ assumes a linear stiff structure, the distance between the $SO₃H$ group and the thiophene unit is shorter than about 5 A ; for this reason the so-called self-doping of P3(PrSO₃H)Th is considered to proceed smoothly.

 $C_2H_5SO_3H$ (0.27 M) with weaker acidity (p $K = -5.5$)⁵ also caused similar p-doping under air. However, the rate of the reaction was considerably (by one order of magnitude) slower. The degree of p-doping finally attained was about half of that attained with $CH₃SO₃H$. These results indicate importance of acidity of the sulfonic acid in the p-doping. $CH₃COOH (0.83 M)$,

which had pKa of 4.56 and showed pKa by about 12 larger than $CH₃SO₃H$ in organic solvents,⁵ did not lead to the p-doping under air. $CF_3COOH (0.36 M)$ with pKa of 0.52 led to the p-doping at a rate comparable to that observed with $C_2H_5SO_3H$ (0.27 M). These results suggest the presence of a favorable interaction between the thiophene unit and anions of strong acids, especially with sulfonic acid. It is noted that most of industrialized electrically conducting π -conjugated polymers have sulfonate (e.g., alkylnaphthalenesulfonate for polypyrrole,⁷ polystyrene sulfonate for poly(ethylenedioxythiophene),⁶ and the self-doping polymers) as the dopant (or the counter anion).

The spectroscopic changes shown in Figure 1 did not obey simple first order kinetics, although the self-doping of $P3(PrSO₃H)Th$ under air obeyed pseudo-first-order kinetics with respect to the concentration of the non-doped thiophene unit.

a-Terthiophene did not undergo the p-doping with CH₃SO₃H, whereas α -quaterthiophenes (α -Th₄'s), α -quinquethiophene $(\alpha$ -Th₅),⁸ and ferrocene received a similar p-doping or oxidation with CH₃SO₃H (0.27 M) under air: for α -Th₄'s and α -Th₅ at slower reaction rate (by two order of magnitude and one order of magnitude slower, respectively,) than that observed with P3HexTh(Fe). These results reveal importance of the π -conjugation length or redox potential of the compound in the p-doping or the oxidation.

Figure 2 shows changes of the UV-vis spectrum during the pdoping of P3HexTh(Zn/Ni) with $CH₃SO₃H$ (0.27 M) under air. As shown in Figure 2, the new absorption peak characteristic of pdoped polythiophenes appears at 822 nm. In the case of P3HexTh(Zn/Ni), the addition of $CH₃SO₃H$, however, causes additional changes of the spectrum. The new peaks around 550 nm seem to be assigned to π -stacked P3HexTh(Zn/Ni),⁴ and changes of nature of the solvent led by addition of $CH₃SO₃H$ and/ or occurrence of partial p-doping is considered to cause the π stacking. It was reported that addition of poor solvents such as

Figure 2. Changes of UV-vis spectrum of P3HexTh(Zn/Ni) in the reaction with methanesulfonic acid (0.27 M) in chloroform at 24 °C under air. Time after the first scan to obtain curve (a)/s: (b) 840; (c) 1920; (d) 5600; (e) 7300.

acetone to the chloroform solution of P3HexTh(Zn/Ni) led to formation of colloidal π -stacked P3HexTh(Zn/Ni).⁴ Rise of the base line in the UV-vis spectrum supports formation of colloidal particles. ESR data showed difference between the p-doped P3HexTh(Fe) and P3HexTh(Zn/Ni). The former gave two ESR signals at $g = 1.9989$ and 1.9997, whereas the latter gave an ESR signal at $g = 2.0000$. Their intensity increased with time, supporting formation of radical species due to the p-doping. For P3HexTh(Zn/Ni), the p-doping is considered to occur with assembled polymer molecules.

The results described above give better understanding for the self-doping of π -conjugated polymers with the pendant sulfonic group and reveal that P3HexTh can also be p-doped in the presence of special acids under air.

The author is grateful to Dr. Y. Nakamura of our laboratory for measurement of the ESR spectra.

References and Notes

- 1 a) ''Handbook of Conducting Polyemrs,'' ed. by T. A. Skotheim, Marcel Dekker, New York (1986) Vols. I and II. b) ''Handbook of Organic Condcting Molecules and Polymers,'' ed. by H. S. Nalwa, John Wiley, Chichester (1997).
- 2 a) A. O. Partil, Y. Ikenoue, F. Wudl, and A. J. Heeger, J. Am. Chem. Soc., 109, 1858 (1987). b) X.-L. Wei, Y.-Z. Wang, S. M. Long, C. Bobeczko, and A. J. Epstein, J. Am. Chem. Soc., 118, 2545 (1996). c) S. Shimizu, T. Saitoh, M. Yuasa, T. Maruyama, and K. Watanabe, Synth. Met., 85, 1337 (1997).
- a) T. Yamamoto, T. Shimizu, and E. Kurokawa, React. Funct. Polym., 43, 79 (2000). b) T. Yamamoto, Macromol. Chem. Phys., 23, 583 (2002).
- 4 T. Yamamoto, D. Komarudin, M. Arai, B.-L. Lee, H. Suganuma, N. Asakawa, Y. Inoue, K. Kubota, S. Sasaki, T. Fukuda, and H. Matsuda, J. Am. Chem. Soc., 120, 2047 (1998).
- 5 a) F. Klages, H. A. Jung, and P. Hegenberg, Chem. Ber., 99, 1704 (1966). b) ''Kagakubenran-kisohen, Kaitei-4,'' Maruzen, Tokyo (1993), p II-322. c) ''CRC Handbook of Chemistry and Physics,'' 83rd ed., ed. by D. R. Lide, CRC Press, Boca Raton (2002), pp 8-46.
- 6 a) F. Jonas and F. Schrader, Synth. Met., 41-43, 831 (1991). b) G. Heywang and F. Jonas, Adv. Mater., 4, 116 (1992). c) T. Yamamoto, K. Shiraishi, M. Abla, I. Yamaguchi, and L. B. Groenendaal, Polymer, 43, 711 (2002).
- 7 Y. Kudo, M. Fukuyama, T. Kojima, N. Nanai, and S. Yoshimura, in ''Intrinsically Conducting Polymers: An Emerging Technology,'' ed. by M. Aldissi, Kluwer Academic Publishers, Dordrecht (1993) p 191.
- Commercially available α -Th₄ and synthesized α -Th₄ and α -Th₅ with 3-hexyl units at the both terminal thiophene units. Details of the synthesis of the latter two compounds will be reported elsewhere.